A Three-Dimensional Representation of Orbitals in Glass Blocks

Nakako TOKITA, Sumio TOKITA*,
Akira IKUO**, and Haruo Ogawa** *Saitama University (Emeritus) 255 Shimo-Ohkubo, Sakura-ku, Saitama, Saitama, 338-8570 Japan
** Department of Chemistry, Tokyo Gakugei University,
Tokyo 184-8501, Japan
*studionebula@gmail.com

In order to understand the charracteristic features of atomic orbitals, electron clouds arre recorded in glass blocks by the use of three - dimensional (3-D) laser technique.

IE is difficult for us to imagine the 3-D appearance of orbitals and the physical meaning from the solution χ of Schroedinger equation. χ^{2} gives the probability density of finding an electron, namely electron clouds.

Mrethods

- C'alcuilate the probability densities of hydrogen atomic orbitails in a 3-D space by the rejection method.

Sculpture the collected data in a glass block by using laser equipment (LeLee Laser Mini Type YF-YAG-200).

Inages of the 3-D probability densities of hydrogen atomic orbitals

The spherical shape of the orbitals together with the inner nodes are shown.

There are existence of planar or planar and spherical nodes.

Comparison of (a) probability density in this work with (b) conventional isosurface representations of $3 \mathrm{~d}\left(3 z^{2}-r^{2}\right)$ orbital.

Please see glass block models IU!

What can be seen in these models?
What becomes of the shape of atomic orbital by
the quantum number?

Why can be seen similar pattern of atomic orbitals having the same magnetic quantum number $|m|$?

Nodes in atomic orbitals

number of nodes

[A] Spherical nodes
[B] Planar nodes containing Z axis
[C] Planar and conical nodes symmetrical about z axis

$$
n-I-1
$$

m

$$
l-|m|
$$

n : principal quantum number
l : azimuthal quantum number m : magnetic quantum number

[A] Spherical nodes

$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$			
$\bigcirc(\bigcirc)$			
2s		4 s	5 s
3p	4 p	5 p	6 p
4 d 5d 6d			

$2 p \quad 3 p 4 p$

3d 4d 5d

3d 4d 5d

[B] Planar nodes containing z axis

When | m | is not equal to 0 , the orbitals have vertical nodes equal to the $|m|$ value.
The square of imaginary wave function $\left|\chi_{n l m}\right|^{2}$ is sliced by these nodal planes as below.

$$
|m|: 0=1 \quad 2 \quad 3 \quad 4 \quad 5
$$

The process of making the real function from $\left|\chi_{n l m}\right|^{2}$

$$
|m|=0
$$

, $|m|=0:$ yellow: plus sign
green: minus sign
, When $|m|=1,\left|\chi_{n l m}\right|^{2}$ is sliced by
one node

- When $|m|=2,\left|X_{n l m}\right|^{2}$ is sliced by two nodes

Patterns in eleven 6h orbitals

The orbital patterns in the view from z axis are classified by the magnetic quantum number, m, as follows.
s orbital pattern $|m|=0$
p orbital pattern $|m|=1$
d orbital pattern $\quad|m|=2$
f orbital pattern $\quad|m|=3$
g orbital pattern $\quad|m|=4$
h orbital pattern $\quad|m|=5 \ldots$
$|r n|=0: \quad$ for example, $3 d\left(3 z^{2}-r^{2}\right), 4 f\left(5 z^{3}-3 z r^{2}\right)$, and $5 g\left(35 z^{4}-30 z^{2} r^{2}+3 r^{4}\right)$

- The view from the z axis gives "s" orbital pattern.

- The view of $x z$ plane from the y axis.

$|m|=1:$ for example,
$3 d(z x), 4 f\left(5 x z^{2}-x r^{2}\right)$, and $5 g\left(7 x z^{3}-3 x z r^{2}\right)$
- The view firom the z axis gives "p" orbital pattern.

- The view of $x z$ plane from the y axis.

$|m n|=2:$ for example, $3 d(x y), 4 f(x y z)$, and $5 g\left(7 x y z^{2}-x y y^{2}\right)$
- The view from the z axis gives "d" orbital pattern.

. The view of $x z$ plane from the y axis.

[C] Planar and conical nodes symmetrical about z axis

Advantageous representation seeing through one side of a glass block

This can be rnade possible onily in the rnethod to sculpture electron clouds in a glas's block
Superposition of three 2 p orbitals gives a sphere.

$$
\chi_{2 \mathrm{p} x^{2}}+\chi_{2 p y^{2}}+\chi_{2 \mathrm{p} z^{2}}=1 /(32 \pi) \exp (-r)\left\{x^{2}+y^{2}+z^{2}\right\}
$$

Hydrogen $2 \mathrm{px}, 2 \mathrm{py}$, and 2pz orbitals (a) The view from the z axis

(b) The view from the x axis gives image of a sphere.

Superposition of three sp^{2} orbitals

$$
\chi_{2 \mathrm{~s}}^{2}+\chi_{2 \mathrm{p} x^{2}}+\chi_{2 \mathrm{p} y^{2}}=1 /(32 \pi) \exp (-r)\left\{(2-r)^{2}+x^{2}+y^{2}\right\}
$$

Picture of three sp² orbitals in manay textbooks is shown, Or'bitals fienve common origin, Is that right?

Pight answer can be seen irn a glass block. Centers of these orbitals are moved on the vertices of a regular triangle, because common origin gives a cylindrical pattern.

The superposition of 2px and 2py orbitals gives cylindrical pattern.

$$
\chi_{2 p x^{2}}+\chi_{2 p y^{2}}=1 /(32 \pi) \exp (-r)\left\{x^{2}+y^{2}\right\}
$$

Representations for molecular orbitals

Ethylene π orbitals
HOMO and LUMO

H2 molecular orbitals

Benzene π occ. orbitals

These designs are registered on the Registers of the Japan Patent Office.

Design Registration Number: 1280636, 129427, 1298894, 1298428, 1298429, 1298430, 1298431, 1298895

Refierences
[1] M. Bom, Z. Phys., 37, 863-867 (1926).
[2] S. Tokita, T. Watanabe, F. Kido, H. Maekawa, and T. Shimozawa, J. Chem. Software, 3, 37 (1996).
[3] N. Tokita, S. Tokita, and T. Nagao, J. Comput. Chem. Jpn., 5, 153 (2006).
http://www.sccj.net/publications/JCCJ/v5n3/a12/document.pdf

Studio Nebula

http://winmostar.com/nebula
http://www.ecosci.jp/sa07/NEBULA01.pdf http://www.ecosci.jp/sa07/NEBULA02.pdf
e-mail: studionebula@gmail.com

